Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1.

نویسندگان

  • Xiaohui Lu
  • Sarah M McDonald
  • M Alejandra Tortorici
  • Yizhi Jane Tao
  • Rodrigo Vasquez-Del Carpio
  • Max L Nibert
  • John T Patton
  • Stephen C Harrison
چکیده

Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 A resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus lambda3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotavirus VP2 core shell regions critical for viral polymerase activation.

The innermost VP2 core shell of the triple-layered, icosahedral rotavirus particle surrounds the viral genome and RNA processing enzymes, including the RNA-dependent RNA polymerase (VP1). In addition to anchoring VP1 within the core, VP2 is also an essential cofactor that triggers the polymerase to initiate double-stranded RNA (dsRNA) synthesis using packaged plus-strand RNA templates. The VP2 ...

متن کامل

Probing the sites of interactions of rotaviral proteins involved in replication.

UNLABELLED Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms, which form during virus infection. These processes are orchestrated by yet-to-be-understood complex networks of interactions involving nonstructural proteins (NSPs) 2, 5, and 6 and structural proteins (VPs) 1, 2, 3, and 6. The multifunctional enzyme NSP2, an octamer with RNA binding...

متن کامل

Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome.

Rotavirus cores contain the double-stranded RNA (dsRNA) genome, RNA polymerase VP1, and guanylyltransferase VP3 and are enclosed within a lattice formed by the RNA-binding protein VP2. Analysis of baculovirus-expressed core-like particles (CLPs) has shown that VP1 and VP2 assemble into the simplest core-like structures with replicase activity and that VP1, but not VP3, is essential for replicas...

متن کامل

Analysis of the kinetics of transcription and replication of the rotavirus genome by RNA interference.

Rotaviruses have a genome composed of 11 segments of double-stranded RNA (dsRNA) surrounded by three protein layers. The virus contains an RNA-dependent RNA polymerase that synthesizes RNA transcripts corresponding to all segments of the viral genome. These transcripts direct the synthesis of the viral proteins and also serve as templates for the synthesis of the complementary strand to form th...

متن کامل

Bioinformatic prediction of polymerase elements in the rotavirus VP1 protein.

Rotaviruses are the major cause of acute gastroenteritis in infants world-wide. The genome consists of eleven double stranded RNA segments. The major segment encodes the structural protein VP1, the viral RNA-dependent RNA polymerase (RdRp), which is a minor component of the viral inner core. This study is a detailed bioinformatic assessment of the VP1 sequence. Using various methods we have ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2008